
A real world use of higher kinds
in the domain of computer algebra

Raphael Jolly
Databeans, Paris, France

raphael.jolly@free.fr

ABSTRACT
This papers presents a solution to a problem which arises
at the crossing of computer algebra and object oriented pro-
gramming. Up to now, in an object oriented approach, some
advanced yet widely used algorithms like greatest common
divisors of multivariate polynomials still required a trade-
off between type-safety and code duplication. This is not
true anymore, since the recent progress in computer lan-
guage research which brought higher-kinded types. These
provide the Scala language with sufficient expressiveness as
to address elegantly the polynomial GCD issue. A detailed
implementation of our solution is given.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Data types
and structures; G.4 [Mathematical Software]: Algorithm
design and analysis

Keywords
Object Oriented Programming, Generic programming, Higher
kinded types, Computer algebra

1. INTRODUCTION
The recent arrival of generics in general purpose, widely

available computer languages such as Java [1] has triggered
a new, exciting area of exploration for computer algebra re-
searchers. This is a deserved return as, according to [5],
this programming technique itself is an offspring of com-
puter algebra : “Generic programming is invented in the
first half of the 1970s as a means to reuse the code of al-
gebraic algorithms over abstract domains, such as Gaussian
elimination.”

The killer application [5] of Generics in general purpose
languages is the Collection framework. In computer alge-
bra they are typically used to abstract over the base ring of
polynomials. This parallel is not surprising, as polynomi-
als are litte more than collections when it comes to act as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$0.00.

containers for a given type of elements.
The Java Algebra System (JAS) [9] is the project that,

to our knowledge, pushed this idea the furthest, with al-
gorithms for computing Groebner bases, greatest common
divisors (GCD) and factorizations of univariate as well as
multivariate polynomials, over integer, rational, modinteger
base rings, and also polynomial base rings (recursively), ra-
tional functions, finite fields, algebraic numbers. It also cov-
ers such areas as solvable (non-commutative) polynomials,
comprehensive Groebner bases, and regular rings.

In the sequel, we are concerned with the specific topic of
GCD computation. The current JAS implementation suffers
from several drawbacks which are discussed at length in [6,
8, 7] and that I aim to address in this paper.

1.1 Outline
Section 2 summarizes the GCD implementation of JAS.

Section 3 introduces a Scala re-implementation of JAS’ classes
based on higher-kinded types which nicely solves the encoun-
tered issue. Section 4 concludes.

2. GREATEST COMMON DIVISORS IN JAS

2.1 Euclid’s algorithm
The GCD algorithms implemented in JAS are based on

Euclid’s algorithm. In the univariate case the implementa-
tion is straightforward, but in the multivariate case one has
to first convert the polynomials to a univariate recursive rep-
resentation, that is to say one needs to translate elements of
K [x1, ..., xn] to elements of K [x1, ..., xn−1] [xn] , see [2].

2.2 Problem statement
The problem is stated as follows [7] : “If we use our current

implementation of GenPolynomial, we observe that our type
system will unfortunately lead to code duplication. Consider
the greatest common divisor method gcd() with the speci-
fication

GenPolynomial<C> gcd(GenPolynomial<C> P,

GenPolynomial<C> S)

This method will be a driver for the recursion. It will
check if the number of variables in the polynomials is one,
or if it is greater than one. In the first case, a method for
the recursion base case must be called

GenPolynomial<C> baseGcd(GenPolynomial<C> P,

GenPolynomial<C> S)

In the second case, the polynomials have to be converted
to recursive representation and a method for the recursion
case must be called

GenPolynomial<GenPolynomial<C>>

recursiveUnivariateGcd(

GenPolynomial<GenPolynomial<C>> P,

GenPolynomial<GenPolynomial<C>> S)

The type of the parameters for recursiveUnivariateGcd()
is univariate polynomials with (multivariate) polynomials as
coefficients. The Java code for baseGcd() and recursive-

UnivariateGcd() is mainly the same, but because of the
type system, the methods must have different parameter
types.”

2.3 Discussion
What comes first to mind, is that if we want to have

only one method (say univariateGcd()), we must give it
a fresh type parameter. We could then call it with either
C or GenPolynomial<C> as type parameter. For this to be
possible, we need to implement the method either as static,
or in a different class. But we must take into account the
fact that we’ll need several flavors of Euclid’s algorithm, like
simple, primitive, subresultant etc. This means that a static
method is very impractical. Let’s then define our method in
a different class. Since the polynomial factories are at hand,
why not use them ? In such case, we get:

class GenPolynomialRing<C extends RingElem<C>>

implements RingFactory<GenPolynomial<C>> {

GenPolynomial<C> gcd(GenPolynomial<C> P,

GenPolynomial<C> S) {

// if we’re univariate, call univariateGcd() ;

// if not, convert to recursive representation

// and then call gcd() on the factory of the

// resulting polynomials

}

GenPolynomial<C> univariateGcd(

GenPolynomial<C> P,

GenPolynomial<C> S) {

// Euclid’s algorithm

}

}

To get several versions of the method univariateGcd()

we need to subclass GenPolynomialRing. But if we want to
remain type-safe, this in turn requires to use a self type:

abstract class GenPolynomialRing<T extends

GenPolynomial<T, C>, C extends RingElem<C>>

implements RingFactory<T> {}

Concrete classes can be derived from this abstract class in
the following manner:

final class GenPolynomialRingWithSimpleGCD<

C extends RingElem<C>> implements

GenPolynomialRing<

GenPolynomialWithSimpleGCD<C>, C> {}

At this point we must introduce the methods that will
make the conversion of representation, and see how it leads
us into trouble.

2.4 Conversion of representation
Refering again to [7], we first need a method to convert

a distributed polynomial A to a recursive polynomial in the
polynomial ring defined by a ring factory rf.

GenPolynomial<GenPolynomial<C>> recursive(

GenPolynomialRing<GenPolynomial<C>> rf,

GenPolynomial<C> A)

The recursive polynomial ring rf is defined in the calling
method gcd() as a univariate polynomial ring with multi-
variate polynomials as coefficients.

Second, we need a method to convert a recursive poly-
nomial B to a distributed polynomial. The target ring is
simply the enclosing class’ instance (this) so we don’t need
to pass it as parameter.

GenPolynomial<C> distribute(

GenPolynomial<GenPolynomial<C>> B)

Now, if we want to use the self type, we must replace
each occurence of GenPolynomial<C> by T. The problem is
with GenPolynomialRing< GenPolynomial<C> >, which can
only become GenPolynomialRing<?, T> where the question
mark stands for something we are unable to specify.

So, as we can see, the signature of the conversion methods
is such that using a self type here is impossible. Thus, we
will have to move to a more expressive language than Java.

3. GCD RE-IMPLEMENTATION WITH
HIGHER-KINDED TYPES

3.1 Higher-order polymorphism
Higher-order polymorphism, also called type constructor

polymorphism, was introduced in Scala in 2007 [10]. It al-
lows to use so called type constructors as type parameters. A
type constructor is the means by which one gets a new type
from a type parameter, as in List : A -> List[A]. Here
List is the type constructor. A higher kinded type would
then be defined as for instance class MyClass[Container[X]

<: List[X]], where Container could be replaced by any
subtype of List, regardless of its type parameter, as in new

MyClass[ArrayList] etc.

3.2 GCD implementation in Scala
The subsequent code fragments are excerpts from ScAS

[4], a project with the very purpose of investigating how we
could address the shortcomings of JAS using Scala.

Below we redefine our polynomial factory in Scala, with a
higher-kinded type.

object Polynomial {

abstract class Factory[

T[C <: Ring[C]] <: Polynomial[T[C], C],

C <: Ring[C]](val ring: Ring.Factory[C],

variables: Array[String]) extends

Ring.Factory[Polynomial[T[C], C]] {

def split: Factory[T, T[C]]

def gcd(x: T[C], y: T[C]): T[C] = if

(variables.length > 1) {

val s = split

valueOf(valueOf(s, x).gcd(valueOf(s, y)))

} else {

val (a, p) = contentAndPrimitivePart(x)

val (b, q) = contentAndPrimitivePart(y)

multiply(gcd1(p, q).primitivePart, a.gcd(b))

}

def valueOf(s: Factory[T, T[C]],

w: T[C]): T[T[C]] = {

// convert to recursive representation

}

def valueOf(w: T[T[C]]): T[C] = {

// convert back to distributed representation

}

def gcd1(x: T[C], y: T[C]): T[C] = {

// Euclid’s algorithm

}

}

}

Here we define the element type Polynomial correspond-
ing to the above factory.

abstract class Polynomial[T <: Polynomial[T, C],

C <: Ring[C](val factory: Polynomial.Factory[

T, C]) extends Ring[T] {

def primitivePart =

factory.contentAndPrimitivePart(this)._2

def gcd(that: T) =

factory.gcd(this, that)

}

These abstract classes are then implemented as follows.
Notice how PolynomialWithSimpleGCD is used without its
type parameter in the type parameters of Polynomial.Factory.

object PolynomialWithSimpleGCD {

final class Factory[C <: Ring[C]](

val ring: Ring.Factory[C],

variables: Array[Variable]) extends

Polynomial.Factory[PolynomialWithSimpleGCD,

C](ring, variables) {

def location = variables.length - 1

def split = new Factory(new Factory(ring,

variables.take(location).force),

variables.drop(location).force)

}

}

In the element type PolynomialWithSimpleGCD, a higher-
kinded type is not needed, and PolynomialWithSimpleGCD

is written with its type parameter in the type parameter list
of Polynomial:

final class PolynomialWithSimpleGCD[C <: Ring[

C]](override val factory:

PolynomialWithSimpleGCD.Factory[C]) extends

Polynomial[PolynomialWithSimpleGCD[C], C](

factory)

The interested reader is invited to consult the source code
of our working prototype in [4] to see these principles in ac-
tion, since the present format only allows for rough sketches.

4. CONCLUSION
Applications of higher-kinds are presently restricted to

mostly language-theoretic areas such as comprehensions or
parser combinators [10]. It was not obvious that they could
be useful in domains closer to the real world like computer
algebra. In the case of multivariate GCD computations, the
key issue that requires higher-kinds is the need to convert
between recursive and distributed representations. On a side
note, today there exist improved algorithms that don’t use
conversions of representation [3]. However, implementations
based on Euclid’s algorithm are still useful, if only for per-
formance comparison with the new ones. Moreover, the case
of GCD computations is not isolated in computer algebra,
as there are similar issues of conversion of representation in
for instance polynomial factorization. We still have to inves-
tigate if our technique can be adapted to such algorithms.

5. ACKNOWLEDGMENTS
I thank Heinz Kredel for associating me to his research

for the last couple of years.

6. REFERENCES
[1] G. Bracha. Generics in the java programming

language. Technical report,
http://java.sun.com/j2se/1.5/pdf/generics-
tutorial.pdf,
2004.

[2] J. Davenport, Y. Siret, and E. Tournier. Computer
Algebra, Systems and Algorithms for Algebraic
Computation.
http://staff.bath.ac.uk/masjhd/masternew.pdf, 1993.

[3] E. Gaydar. Calculation of polynomial gcd by grobner
basis. Preprint, 1991.

[4] R. Jolly. Scas - Scala algebra system. Technical report,
http://github.com/rjolly/scas, 2010.

[5] E. Kaltofen. Challenges of symbolic computation: My
favorite open problems. J. Symb. Comput., 2000.

[6] H. Kredel. On the Design of a Java Computer Algebra
System. In Proc. PPPJ 2006, pages 143–152.
University of Mannheim, 2006.

[7] H. Kredel. Multivariate greatest common divisors in
the Java Computer Algebra System. In Proc.
Automated Deduction in Geometry (ADG), pages
41–61. East China Normal University, Shanghai, 2008.

[8] H. Kredel. On a Java Computer Algebra System, its
performance and applications. Science of Computer
Programming, 70(2-3):185–207, 2008.

[9] H. Kredel. The Java algebra system (JAS). Technical
report, http://krum.rz.uni-mannheim.de/jas/, since
2000.

[10] A. Moors, F. Piessens, and M. Odersky. Generics of a
higher kind. ACM SIGPLAN Notices, 2008.

