
 01/20

 Progress report on the Scala Algebra System

 Raphaël Jolly
 Databeans

 CASC 2020
 Linz

Introduction 02/20

* Idea : use type classes in the Scala language to model
 algebraic structures[1] as an alternative to F-bounded
 polymorphism, used in the Java Algebra System[2]
* Benefits: allows post-facto extensions[3] and makes it
 possible to reuse existing classes without wrappers
* Also allows generic numeric-symbolic implementations,
 with unboxed primitive types for improved efficiency
* There was however a problem with coercions and their
 interaction with type classes

[1] Jolly, R. Categories as type classes in the Scala
Algebra System. CASC 2013
[2] Kredel, H. Parametric solvable polynomial rings and
applications. CASC 2015
[3] Watt, S. Post facto type extensions for mathematical
programming. DSAL 2006

Introduction (cont.) 03/20

In consequence, I had to devise a hybrid scheme: as type
classes can operate with values of any type, why not
exercise them on f-bounded classes, which are coercion-
friendly.

The downside of this approach is that I could not use it to
implement a Scala DSL to existing libraries (JAS) like is
currently possible with Jython or JRuby. For this, I had to
wait for improvements in the Scala language itself, which
are now begining to emerge in Scala 3 ("Dotty").

In Dotty, type classes are now enhanced to support
extension methods, which allow to define infix operators,
with their parameters on each side.

But let us first look at a Scala 2 type class declaration.

Type classes : Scala 2 04/20

trait Ring[T] {
 def plus(x: T, y: T): T
 def zero: T
}
object Ring {
 trait ExtraImplicits {
 implicit def infixRingOps[T: Ring](lhs: T): Ops[T] =
 new OpsImpl(lhs)
 }
 trait Ops[T] {
 def lhs: T
 def factory: Ring[T]
 def +(rhs: T) = factory.plus(lhs, rhs)
 }
 class OpsImpl[T: Ring](val lhs: T) extends Ops[T] {
 val factory = implicitly[Ring[T]]

Type classes : Scala 3 05/20

trait Ring[T]:
 def (x: T) + (y: T): T
 def zero: T

https://dotty.epfl.ch/docs/reference/contextual/extension-
methods.html

Type classes : Scala 3 06/20

trait Ring[T]:
 def (x: T) + (y: T): T
 def zero: T

* example definition

type BigInteger = java.math.BigInteger

given BigInteger as Ring[BigInteger]:
 def (x: BigInteger) + (y: BigInteger) = x.add(y)
 def zero = java.math.BigInteger.valueOf(0)

Implicit conversions (coercions) 07/20

scala> 1l + 1
scala> 1 + 1l
// res1: Long = 2

scala> BigInt(1) + 1
scala> 1 + BigInt(1)
// res3: scala.math.BigInt = 2

* Polynomials : ZZ[x]
 x + 1
 1 + x
* Nested polynomials : ZZ[x][y]
 x + y
 y + 1

* This was not working in Scala 2 because type classes and
coercions use the same underlying mechanism (implicits)

JAS adapter 08/20

class Ring[T <: RingElem[T] : RingFactory]
 extends scas.structure.ordered.Ring[T] {
 def (x: T) + (y: T) = x.sum(y)
 def (x: T) - (y: T) = x.subtract(y)
 def (x: T) * (y: T) = x.multiply(y)
 def compare(x: T, y: T) = x.compareTo(y)
 def (x: T).isUnit = x.isUnit
 def characteristic = RingFactory[T].characteristic
 def zero = RingFactory[T].getZERO()
 def one = RingFactory[T].getONE()
 def (x: T).toCode(level: Level) = x.toString
 def (x: T).toMathML: String = ???
 def toMathML = ???

object RingFactory:
 def apply[T <: RingElem[T] : RingFactory] =
 summon[RingFactory[T]]

JAS adapter : use case 09/20

import jas.{ZZ, BigInteger, poly2scas, coef2poly,
 int2bigInt, bigInt2scas}

given r as GenPolynomialRing[BigInteger](ZZ,
 Array("x", "y", "z"), TermOrderByName.INVLEX)
val Array(one, x, y, z) = r.gens
val s = poly2scas(r)
import s.{+, *}

val p = 1 + x + y + z
val q = p \ 20
val q1 = q + 1
val q2 = q * q1
q2.length
// 12341

JAS adapter : Jython 10/20

from jas import PolyRing, ZZ
sparse polynomial powers

r = PolyRing(ZZ(), "(x,y,z)", PolyRing.lex);

[one,x,y,z] = r.gens()

p = 1 + x + y + z;
q = p ** 20;
q1 = q + 1;
q2 = q * q1;
len(q2)
// 12341

Related work : Scala DSL for Rings 11/20

The Rings project[4] has opted for a similar, typeclass-
based design with its Scala DSL interface. To address
the coercion problem, as far as I can tell the retained
solution looks as follows in the new typeclass syntax.

trait Ring[E]:
 def (x: E) + (y: Int): E
 def (x: E) + (y: E): E
 def (x: Int) + (y: E): E

trait IPolynomialRing[Poly <: IPolynomial[Poly], E]
 extends Ring[Poly]:
 def (x: Poly) + (y: E): Poly
 def (x: E) + (poly: Poly): Poly

[4] Poslavsky, S. Rings: An efficient JVM library for
commutative algebra (Invited Talk). CASC 2019

Related work : Scala DSL for Rings (cont.) 12/20

import cc.redberry.rings

import rings.poly.PolynomialMethods._
import rings.scaladsl._
import syntax._

implicit val ring = UnivariateRing(UnivariateRing(Z, "x"),
"y")
val x = ring("x")
val y = ring("y")

ring.show(x+y)
// x+y

Related work : Scala DSL for Rings (cont.) 13/20

implicit val r = UnivariateRing(Z, "x")
implicit val s = UnivariateRing(r, "y")
val x = r("x")
val y = s("y")

r.show(x+asBigInteger(1))
// 1+x

s.show(y+asBigInteger(1))
// javax.script.ScriptException: value + is not a member of
UnivariatePolynomial[UnivariatePolynomial[BigInteger]] in
s.show(y+asBigInteger(1))

ScAS adapter for Rings 14/20

abstract class Ring[T] extends
scas.structure.ordered.Ring[T]:
 def ring: cc.redberry.rings.Ring[T]
 def coder = Coder.mkCoder(ring)
 def (x: T) + (y: T) = ring.add(x, y)
 def (x: T) - (y: T) = ring.subtract(x, y)
 def (x: T) * (y: T) = ring.multiply(x, y)
 def compare(x: T, y: T) = ring.compare(x, y)
 def (x: T).isUnit = ring.isUnit(x)
 def characteristic = ring.characteristic
 def zero = ring.getZero()
 def one = ring.getOne()
 def (x: T).toCode(level: Level) = coder.stringify(x)
 def (x: T).toMathML = ???
 def toMathML = ???

Inline 15/20

Scala offers some mechanisms for automatic code
specialization. In the former versions, there was a
@specialized annotation, but it is abandonned in Dotty.
Fortunately, there is a replacement mechanism.

abstract class MathLib[N : Numeric]:
 def dotProduct(xs: Array[N], ys: Array[N]): N
object MathLib:
 inline def apply[N : Numeric] = new MathLib[N]:
 def dotProduct(xs: Array[N], ys: Array[N]) =
 require(xs.length == ys.length)
 var i = 0
 var s: N = Numeric[N].zero
 while (i < xs.length)
 s = s + xs(i) * ys(i)
 i += 1
 s

Inline : call site 16/20

val mlib = MathLib[Double]

val xs = Array(1.0, 1.0)
val ys = Array(2.0, -3.0)
mlib.dotProduct(xs, ys)
// -1.0

https://github.com/lampepfl/dotty/blob/master/docs/docs/
typelevel.md
Functional Typelevel Programming in Scala
Code Specialization

Inline : call site 17/20

val mlib = MathLib[Double]

val xs = Array(1.0, 1.0)
val ys = Array(2.0, -3.0)
mlib.dotProduct(xs, ys)
// -1.0

I have used this principle to specialize a generic
implementation of power product exponents in the Scala
Algebra System. To assess the improved efficiency of inline
specialized code, I have used the Polypower benchmark that
we have seen previously.

Inline : polypower benchmark 18/20

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 scas_nspec

 scas

 jas

 degree

 ti
m

e
(s

)

This graphic shows the execution times versus degree
of polynomial in multiplication with non-specialized
and specialized generic exponent vectors, respectively,
together with originally specialized JAS code for
comparison. As we can see, there is considerable cost for
boxing, which is removed by specialization.

Conclusion 19/20

* The redesign of type classes and implicits in Scala 3
 offers a solution to the coercion problem

* It makes it possible to use Scala as DSL for existing
 libraries

* There are proof of concept implementations for JAS, Rings

* There is a small improvement over how coefficients are
 lifted to the target ring in Rings' own Scala DSL

* The construct is reasonably efficient and might be used
 to implement the whole library as well as the interface

 20/20

 Thank you !

 http://github.com/rjolly/scas

