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meditor is a text-based editor interface to the Java symbolic computing engine/library (JSCL). It operates as amagic board: expressions

are evaluated in-place and rendered, either in text or MathML. Communication with the engine is made through the JSR-223 Scripting

API, which makes it interchangeable. MathML results are integrated in the document as MathML islands. It is also possible to include

graphs as SVG islands. With this technique, the file format is restricted to text/plain, for improved interoperability. There is how-

ever the option to export documents in XHTML and PDF. MathML fragments are translated to script using XSLT transformations,

to be interpreted again by the engine. The symbolic engine can be either specialized for symbolic computation, or a general pur-

pose scripting language, following the “libraries and scripting” approach [1], which will be showcased using the Beanshell scripting

language [2].
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1 BASIC OPERATION : EVALUATION AND RENDERING

In the editor’s text pane, an expression is selected and evaluated with the Math->Evaluate menu item (Ctrl+E).

MathML rendering is enabled by selecting the Rendering checkbox in the option panel. The defining trait of sym-

bolic computation, as opposed to numerical, is that one can manipulate symbols without assigning them first with a

value:

x^2*y^2

= x2y2

2 JSCL EXAMPLES

Here are some example computations with the JSCL engine:

solve(c+b*x+a*x^2,x)

= root0(c,b,a)

subst(1/x^2,x,a)

= 1
a2
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simplify(exp(sqrt(-1)*pi))

= −1

simplify(elementary(cos(x)^2+sin(x)^2))

= 1

numeric(exp(1))

= 2.718281828459045

d(cos(f(x)),x)

= −(f ′(x) sin f (x))

curl(grad(f(x,y,z),{x,y,z}),{x,y,z})

=
©­­­«

0

0

0

ª®®®¬
sum(d(exp(x),x,0,i)/i!*(x-0)^i,i,0,4)

= 1 + x + 1
2x

2
+

1
6x

3
+

1
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integral(1/(1+x^2),x)

= root0(1, 0, 4) ln(1 − 2xroot0(1, 0, 4)) + root1(1, 0, 4) ln(1 − 2xroot1(1, 0, 4))

A special quote operator is provided to suspend evaluation and render expression inputs:

quote(integral(1/(1+x^2),x))

=
∫

1
1+x 2 dx

3 REVERSE INTERPRETATION OF MATHML EXPRESSIONS

Once computed and rendered, expressions can be re-interpreted by the script engine by means of XSLT transformation,

in function of the considered language, as show in Figure 1.
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MathML

Presentation
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Fig. 1. Interpretation of MathML fragments through XSLT.
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4 BEANSHELL SCRIPT EXAMPLE : POLYNOMIAL SYSTEM SOLVING

meditor can solve polynomial systems using Gröbner bases, which can be useful in a variety of domains, for example

in geometry. Suppose we want to find the intersection of a line and a circle. We can write the corresponding system

and apply the groebner operator, as shown below.

import jscl.math.Generic;

static import jscl.math.Predef.*;

x = variable("x");

y = variable("y");

groebner(

(
4 − x2 − y2

1 − xy

)
,

(
x

y

)
) =

(
1 − 4x2 + x4

4x − x3 − y

)

Input expressions are being first re-interpreted to Beanshell throughXSLT. This ismade explicit using the Math->Copy

to code menu item (Ctrl-J):

vector(new Generic[] {integer("1").subtract(integer("4").multiply(x.pow(2))).add(x.pow(4)),

integer("4").multiply(x).subtract(x.pow(3)).subtract(y)})

Note that in contrast to the specialized case, some states need to be prepared beforehand by importing some classes

and assigning symbolic values to some variables. Without it, we would be unable to interpret expressions as valid

script fragments.

5 GRAPHING

Graphs are produced using the graph operator as shown in Figure 2.
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Fig. 2. graph(sin(x),x)
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