
Object Scala Found
a JSR223-compliant version of the scala interpreter

Raphäel Jolly

Databeans, V́elizy-Villacoublay, France

raphael.jolly@free.fr

Abstract
The interpreter that comes together with the Scala bundle
lacks JSR223 compliance. It has done so for a few years now,
even though such compatibility is deemed useful by a grow-
ing number of people. We aim to highlight the impeding is-
sues and to propose some solutions. A working prototype is
provided, up-to-date with Scala version 2.8.1.

Categories and Subject Descriptors D.3.4 [Interpreters]

General Terms scripting, class path, class loader

Keywords JSR223

1. Introduction
Three years ago, an enhancement request was submitted to
make the Scala interpreter JSR223 compliant [5]. Since then,
some progress has been made, but it has still not made it
to the generally available Scala bundle. In his presentation
at Scala Days 2010 [3], Michael Dürig outlined three main
impediments to a satisfactory implementation :

• the Scala compiler needs a class path to load class files,
whereas usually only a class loader is provided,

• JSR223’s dynamic approach for passing arguments does
not play well with Scala’s static types,

• performance constraints require caching of pre-compiled
scripts.

The present work aims to address these three issues, in
order to enable an eagerly awaited impementation, for uses
ranging from server side and web applications to client side
applets, command-line execution or IDE-plateform integra-
tion.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Scala Days ’11 June 2-3, Stanford University, California.
Copyright c© 2011 ACM [to be supplied]. . . $00.00

2. Passing statically typed arguments to the
scripting engine

Passing arguments to scripts is mainly a problem for server
side applications where e.g. a servlet engine needs to com-
municate data to Scala web templates. The javax.script API
[8] doesn’t allow to specify a type for passed arguments,
whereas the Scala compiler needs it. One is then conducted
to write such things as:

val request = bindings.get("request")

.asInstanceOf[HttpServletRequest]

, which is a little verbose compared to what is needed in
a web template. However, we can first see that this is not so
bad an issue for the many other uses of the Scala interpreter,
which

• don’t all require passed arguments

• don’t mind a little added boilerplate when they do

Second, the solution devised in [3] is departing from a
strict scripting approach by requiring an enclosing declara-
tion, what we see as not completely satisfactory, even though
it allows IDE to understand the code.

So we decided to put this issue aside, and we haven’t
followed up on the existing attempts to solve it.

3. Caching pre-compiled scripts
The issue of pre-compilation and caching is solved in our
implementation [6], by using the optionalCompilable and
CompiledScript interface and class of the javax.script
API. This is especially useful for web applications, because
in such a case one can not afford to re-compile the dynamic
pages at every web request.

4. Providing a class path to the scala
compiler

This last issue is the serious one, holding back a gen-
eral availability of a JSR223 implementation of Scala.
Having scala.tools.nsc.Interpreter to implement
javax.script.ScriptEngine is easy and has been done
a few times now. However such a naive implementation

quickly meets some tricky issues. An easy test to make is
to run the adapted interpreter through the jrunscript utility
that comes with the JDK. So, whereas the proprietary inter-
preter execution yields:

$ scala

Welcome to Scala version 2.8.1.final (Java

HotSpot(TM) Client VM, Java 1.6.0_21).

Type in expressions to have them evaluated.

Type :help for more information.

scala> "hello world"

res0: java.lang.String = hello world

scala> $

, in JSR223 compatible mode one would write in contrast:

$ jrunscript -classpath scala-compiler.jar

-l scala

However one gets the following outcome then:

scala> "hello world"

Failed to initialize compiler: object

scala not found.

** Note that as of 2.8 scala does not

assume use of the java classpath.

** For the old behavior pass -usejavacp

to scala, or if using a Settings

** object programatically,

settings.usejavacp.value = true.

java.lang.NullPointerException

scala> $

However, a working command can be recovered, like so:

$ jrunscript -Djava.class.path=

scala-library.jar -Dscala.usejavacp=

true -classpath scala-compiler.jar

-l scala

scala> "hello world"

hello world

scala> $

The issue here is that not every environment will al-
low to give the compiler all its needed arguments. As said
above, some environments only provide a class loader and
not a class path, for instance : applet containers. In [2],
Michael Dürig says “all languages which I looked at and
which do symbol resolution at compile time use the same
’classloader.getResource(”foo.class”)’ hack to get access to
a class file. Languages which require to browse the classes
available to them at compile time need to resort to even more
esoteric hacks”

And indeed with Scala we are in the latter case : not only
do we have to take class files as resources, but in addition we

need a list a all such available files. But this is not allowed
by the JDK implementation.

5. Providing a class path : problem and
solution

The problem is that the Scala compiler, which acts behind
the scene for every instruction issued to the interpreter, needs
to know what classes are available to it and what classes
are not, be it only to resolve such wildcard imports as for
instance:

import scala._

The solution we have devised to provide such list of
classes is through the jar manifest file:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.7.0

Created-By: 1.5.0_22-b03 (Sun Microsystems

Inc.)

Name: scala/xml/parsing/TokenTests.class

Name: scala/reflect/NamedType.class

...

That way, the needed list comes at no cost in the case of
signed jar files , mandated in the case of applets for instance.
In other cases, one can manually create the list and include it
in the manifest. This is required if the target platform refuses
signed jar files, as is the case for the Google App Engine, as
far as our tests can tell.

In addition to its own classes which we saw are typically
missing (“object scala not found”), the compiler can be given
access to any number of third party libraries, provided their
classes are listed in the manifest as explained. As scripting
is often meant to make library access easy, this feature is of
course a must.

6. Related work and conclusion
We have designed a modified Scala interpreter, which can
build its classpath from its libraries’ jar manifest files. This
provides for full independance w.r.t. the hosting plateform.
The engine has been tested with success on the following
environments, both on the client and server side:

• the jrunscript command

• the Google App Engine

• the Tomcat web server version 5.5 (with security enbled)

• a Java web start applet

• a Netbeans module

An existing Scala applet project [1] uses another technol-
ogy : the URL of the jar file is derived from the one of a class

file resource, and it is added as-is to the classpath. It works
well on the server side, but for a client side applet it means
that the jar file will be downloaded again and again each time
the applet is run, instead of being cached as is normally the
case for applet libraries. In fact this problem prompted the
present work, in the context of a scala computer algebra ap-
plication which we wanted to make available through java
web start [4, 7].

Acknowledgments
This paper is dedicated to the memory of my brother Patrice
Jolly (Sep. 18, 1976 - Feb. 3, 2011)

References
[1] A. Bagwell. Simply scala. Technical report,

http://www.simplyscala.com/, 2010-.

[2] M. Dürig. Introduce a classreader for scripts
which need to do symbol resolution at compile
time. Technical report, Apache Sling, 20O9. URL
http://issues.apache.org/jira/browse/SLING-945.

[3] M. Dürig. Scala for scripting. Techni-
cal report, Day Software AG, 2010. URL
http://days2010.scala-lang.org/sites/days2010/files/15-5-E

- Scripting - Dürig.pdf.

[4] R. Jolly. jscl-meditor - Java symbolic computing li-
brary and mathematical editor. Technical report, http://jscl-
meditor.sourceforge.net/, 2003-.

[5] R. Jolly. make scala jsr 223 compliant. Technical report,
http://lampsvn.epfl.ch/trac/scala/ticket/874, May 2008.

[6] R. Jolly. Jsr223-compliant version of the scala interpreter.
Technical report, http://github.com/rjolly/scala-compiler, 2011.

[7] H. Kredel and R. Jolly. Generic, Type-Safe and Object
Oriented Computer Algebra Software. InComputer Algebra in
Scientific Computing. Springer Berlin / Heidelberg, 2010. URL
http://krum.rz.uni-mannheim.de/kredel/oocas-casc2010-slides.pdf.

[8] Sun Microsystems, Inc. JSR 223: Scripting for the Java plat-
form. Technical report, http://scripting.dev.java.net/, 2003-
2006.

