
Implicit conversions in the Scala Algebra System

(extended abstract)

Raphaël Jolly

Databeans, Vélizy-Villacoublay, France, raphael.jolly@free.fr

1 Introduction

The Scala Algebra System [1] is a computer algebra project written in Scala.

The Scala programming language allows to conveniently define algebraic cate-

gories with its type classes and extension methods [2, 3]. It also provides implicit

conversions, but these turn out to be difficult to operate in conjunction with

said features. Moreover, discussions are on-going about restricting their opera-

tion, which is currently too heavyweight [4]. This complicates the subject even

further, but might also bring new opportunities.

2 Enrichment and promotion

One of the most important features a general purpose language has to provide

for computer algebra is custom types, and among these a type for multiprecision

arithmetic. Object oriented languages are well suited for custom types, and this is

the case of Java. Its multiprecision arithmertic type is java.math.BigInteger.

Its syntax however is verbose and two more features will have to be found else-

where : enrichment and numeric promotion. Enrichement allows to endow a nu-

meric type with arithmetic operators, while promotion allows to lift an operand

value from a subset type to the type of the other operand.

In Scala there are two possible approaches for enrichement : wrapper and

typeclass. In the standard library, a multiprecision arithmetic type BigInt is

provided, which is of the wrapper kind. Numeric promotion for this type is

supported, as shown below:

val a = BigInt(1)

val b = a + 1

val c = 1 + a

In the typeclass approach however, promotion on the left operand does not

work:

import java.math.BigInteger

import scala.language.implicitConversions

trait Ring[T]:



2 R. Jolly

extension (x: T) def + (y: T): T

given r: Ring[BigInteger] with

given Conversion[Int, BigInteger] = BigInteger.valueOf(_)

extension (x: BigInteger) def + (y: BigInteger) = x.add(y)

import r.given

val a = BigInteger("1")

val b = a + 1 // works

val c = 1 + a // fails

3 Wrapper vs typeclass approach

In the wrapper approach numeric promotion is enabled by the definition below

in object BigInt:

implicit def int2bigInt(i: Int): BigInt = apply(i)

The Scala specification states in which situations implicit conversions (or

views) are applied. For promotion on the right operand it is:

1) If an expression e is of type T, and T does not conform to the expres-

sion’s expected type pt. In this case, an implicit v which is applicable to

e and whose result type conforms to pt is searched. The search proceeds

as in the case of implicit parameters, where the implicit scope is the one

of T => pt. If such a view is found, the expression e is converted to v(e)

[5]

In the example in Section 2, the type of the parameter to + is Int whereas its

expected type is BigInt, so an implicit conversion is looked up in the implicit

scope of Int => BigInt, which includes BigInt’s companion object.

For promotion on the left operand, the situation is:

3) In an application e.m(args) with e of type T, if the selector m denotes

some accessible member(s) of T, but none of these members is applicable

to the arguments args. In this case, a view v which is applicable to e and

whose result contains a method m which is applicable to args is searched.

The search proceeds as in the case of implicit parameters, where the

implicit scope is the one of T => pt, with pt being the structural type

{ def m(args: T_1 , ... , T_n): U }. If such a view is found, the

application e.m(args) is converted to v(e).m(args)

So we have an explanation why promotion on the left does not work in the

typeclass approach : the relevant type is Java’s BigInteger and there is no

implicit scope where to look for an implicit conversion. The problem can be

circumscribed by importing the operator from the typeclass instance, which is

done using a wildcard *:



Implicit conversions in the Scala Algebra System (extended abstract) 3

import r.{given, *}

...

val c = 1 + a // works

4 Defining several instances in the same scope

One further problem occurs if we try to define more than one typeclass instance

in the same scope. Promotion on the right operator still works, but not on the

left:

case class MyInt1(n: Int)

case class MyInt2(n: Int)

given r: Ring[MyInt1] with

given Conversion[Int, MyInt1] = MyInt1(_)

extension (x: MyInt1) def + (y: MyInt1) = MyInt1(x.n + y.n)

given s: Ring[MyInt2] with

given Conversion[Int, MyInt2] = MyInt2(_)

extension (x: MyInt2) def + (y: MyInt2) = MyInt2(x.n + y.n)

import r.{given, *}

import s.{given, *}

MyInt1(1) + 1 // ok

MyInt2(1) + 1 // ok

1 + MyInt1(1) // None of the overloaded alternatives of method +

in class Int with types ... match arguments (MyInt1)

1 + MyInt2(1) // None of the overloaded alternatives of method +

in class Int with types ... match arguments (MyInt2)

Whe have a hint of what is wrong if we substitute a operator that is not

already part of type Int:

1 ++ MyInt1(1)

^^^^

value ++ is not a member of Int.

An extension method was tried, but could not be fully constructed:

s.++(s.given_Conversion_Int_MyInt2.apply(1))

failed with:

Ambiguous extension methods:

both s.++(s.given_Conversion_Int_MyInt2.apply(1))

and r.++(r.given_Conversion_Int_MyInt1.apply(1))

are possible expansions of 1.++



4 R. Jolly

The extension method resolution does not try hard enough and fails to see

that one of the possible solutions is working better than the other. This limitation

of the Scala compiler can be mitigated by some arrangements, which will be

discussed in the presentation.

References

1. Jolly, R.: ScAS - Scala Algebra System. Tech. rep., https://github.com/rjolly/scas

(2010-2024)

2. Jolly, R.: Categories as type classes in the Scala Algebra System. In:

Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC. Lec-

ture Notes in Computer Science, vol. 8136, pp. 209–218. Springer (2013),

https://link.springer.com/chapter/10.1007/978-3-319-02297-0_18

3. Jolly, R.: Progress report on the scala algebra system. In: Computer Algebra in

Scientific Computing: 22nd International Workshop, CASC 2020, Linz, Austria,

September 14–18, 2020, Proceedings 22. pp. 307–315. Springer (2020)

4. Scala contributors: Proposed changes and restrictions for implicit con-

versions. Tech. rep., https://contributors.scala-lang.org/t/proposed-changes-and-

restrictions-for-implicit-conversions/4923 (2021)

5. Scala developers: Implicit conversions - more details. Tech. rep., https://docs.scala-

lang.org/scala3/reference/changed-features/implicit-conversions-spec.html (2002-

2024)


